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Abstract

This project examines the effectiveness of three optimisation algorithms in optimising the
selection of a Fantasy Premier League team over the course of a season. This specific
task is similar to the 0/1 knapsack problem, a known combinatorial optimisation problem.
However, there are some key differences, such as a time-varying aspect and multiple
constraints on which selections are permitted.

To compare these algorithms, I first constructed a custom points-prediction model
that used historical statistical data from the 2023/24 Premier League Season to produce
a predicted points score for each player and every week of the 2024/25 season. Having
obtained this, I discussed the theoretical background of each algorithm and then practically
implemented each of them in Python.

My key finding was that the best solutions were obtained by a recursive knapsack
algorithm which worked on a rolling two-week time horizon. I also found the greedy
algorithm to be highly efficient in producing good solutions with little computational effort.
This contrasted with the performance of the genetic algorithm, which produced relatively
poor-quality solutions with a large computational effort.
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Chapter One

Introduction

The fantasy sports industry has experienced dramatic growth in recent years, pitching
itself as a safe and accessible alternative to traditional forms of sports betting. The United
States Fantasy Sports and Gaming Association estimates that more than 60 million people
play fantasy sports games in the US and Canada alone [1]. Despite the games being
free-to-play, the global fantasy sports market is valued at over $37 billion as of 2025.
This stems from advertising, sponsorship deals and the ability of fantasy games to boost
engagement in the sports that they feature [2].

Fantasy Premier League (colloquially known as ‘FPL’) is one such example of a free-
to-play online fantasy sports game, representing a significant proportion of this global
market, with more than 10 million players signed up as of the 2024/25 season [3]. In FPL,
individuals ‘manage’ their own football squad by selecting a certain number of Premier
League footballers every week. Based on how these footballers perform in their real-life
matches, the fantasy managers will earn points, with the objective of earning more points
each week than their friends and the wider FPL player base.

Over the past several years the game’s popularity has grown rapidly, transforming FPL
from a geeky hobby into a global phenomenon. Content creators on YouTube and other
social media platforms rake in hundreds of millions of views and, most relevantly to this
project, paid services which rely on data analytics can charge upwards of £20 per month
in exchange for giving advice to FPL managers [4] [5]. These models use historical data
and advanced prediction algorithms to give an expected points score for each footballer
every week. Creating accurate models for FPL has proven to be a manageable task; an
analysis by one major model provider named ‘FPL Review’ found that the most popular
models achieve more than a 95% accuracy score in player point prediction when compared
with a theoretically perfect model [6]. Given that modelling seems to have been so well
executed, it may appear as though the usefulness of data analytics to FPL has been fully
realised - but it has not.

Even once you have a predicted points score for each player every week that you
are confident in, the problem of selecting a collection of players every week is far from
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straightforward. In FPL, there are several key constraints that all managers’ teams must
abide by; your squad must be a certain size, there is a certain budget you have to spend
on your squad which cannot be exceeded, and each week you may only make one transfer
without incurring a cost. These factors together transform the relatively simple modelling
problem into a 38-week optimisation problem in which budget and transfer constraints
must be abided by and navigated.

To demonstrate the extent of this selection problem, let us consider simply the number
of possible ways a single squad of 15 could be selected. Taking budget constraints into
account restricts the number of available players to roughly 400, and so the number of
unique 15-player squads is approximately 400 choose 15 - more than 6× 1026. Once you
also consider the fact there may be roughly 400 possible transfers per week, this brings up
the total number of possible ways your team might develop over the season to more than
10121. To put this in context, the number of atoms in the observable universe is estimated
to be approximately 1082, and the number of grains of sand on Earth is estimated to be
around 1020 [7] [8]. Therefore, if we took all of the atoms in the universe and turned them
into Earths, and then counted the grains of sand in all of them, we still would have a
number less than a trillion million-th of the number of possible season-long team choices.

All of this is to say that the space over which an algorithm might try to pick an optimal
team is far too large for a systematic, exhaustive search. Algorithms which go through
large search spaces and aim to optimise an output subject to constraints can be applied
to a myriad of commercial uses too, from portfolio management and stock selection to
optimising the transportation of heavy cargo in shipping [9]. In this project, I will first
use data from the 2023/24 Premier League season to formulate a rudimentary predicted
points model, and this model will then produce a predicted points score for all players
and weeks in the 2024/25 season. I will then seek to code and evaluate three different
optimisation algorithms, which will be applied to this database of predicted points, with
the aim of maximising the total season points of a team. To conclude, I shall compare
the computational complexity and performance of the three algorithms and discuss the
strengths and weaknesses of each.
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Chapter Two

Creating the Point Prediction Model

In order to compare the performance of different optimisation algorithms in maximising
the FPL points of a team over the course of a season, it is first necessary to create a model
that predicts the points of each player each week. Using historical data from the 2023/24
season, I will use a simple model to predict the points score of each player in every week
of the 2024/25 season.

In this chapter, I will outline the actions which earn football players FPL points,
explain the data source for my prediction model, flesh out the rationale for my model’s
calculations and justify any simplifications I make.

2.1 How Players Score Points

In FPL, players can earn or lose points for a range of actions [10]. The most obvious
and highest-scoring action is, of course, scoring a goal, but players also receive points for
assists and how many minutes they play. In addition, players delineated as goalkeepers,
defenders or midfielders are awarded points if they ‘keep a clean sheet’ - in other words,
prevent the opposition from scoring during the entire game. Similarly, goalkeepers can
earn points for the number of saves they make. Players can also lose points, for example if
they receive a yellow or red card, miss a penalty or score an own goal.

The full list of point-scoring actions is slightly longer and more complicated than I
have laid out, and the position of a player can affect the points they receive for certain
actions. Given that my project is focused on the algorithms that seek to optimally select a
team based on some database of predicted points, rather than the mechanism of predicting
the points themselves, I will make several simplifications. These simplifications are made
in order to keep my model practical to run for all of the players over the full 38-week
season whilst also maintaining a strong predictive power. One example of a point-scoring
action my model will neglect to include is goalkeeper save points, as they are extremely
variable and hard to predict whilst also being low scoring. Similarly, after every match,
three players earn bonus points depending on a complicated sum of their different actions
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in the game. This sum would be computationally extensive to calculate for all 380 games
over the season and bonus points are also relatively low scoring and infrequent, so they
will also be neglected.

The following table details the actions which my model will predict and displays the
number of points each type of player will earn for performing them.

Action Goalkeeper Defender Midfielder Attacker

Playing 90 Minutes 2 2 2 2
Yellow Card -1 -1 -1 -1
Red Card -3 -3 -3 -3

Clean Sheet 4 4 1 0
Assist 3 3 3 3
Goal 10 6 5 4

Table 2.1: The Points Scored by Each Type of Player
For Each Action Considered in the Model

2.2 Data Source

To create a model of expected points which has strong predictive power, the data source
must contain extensive data regarding each of these point-scoring actions. For instance,
I need to have data points for minutes, yellow and red cards, clean sheets, assists and
goals. The data source I will be using in my predicted points model is an extensive online
repository covering the 2023/24 FPL season. The data comes from the official FPL website
and another mainstream analytics provider called Understat and has been collected and
processed into a database by Vastaav Anand [11]. This database is suitable because it has
statistics on every player in the league which are relevant to the key point-scoring actions.
A sample of the database can be found in Appendix A.

2.3 Calculating Expected Points

Calculating the expected points scored for performing certain actions is relatively simple.
For instance, the number of minutes a player gets per season tends to be fairly stable; if
a player is a key member of a squad one season, he is unlikely to lose his position and
be benched a lot the next season. Therefore, we can extrapolate that players will get
approximately the same number of points per game for minutes as they did in the previous
season. Similarly, the propensity of a player to get yellow and red cards is likely to be
relatively constant when taken over the course of 38 games, and so the points from that

8



action can be extrapolated to the next season. The more challenging and interesting
actions to predict are goals, assists and clean sheets.

2.3.1 Predicting Goals and Assists

In football analytics, it is challenging to predict the future goal-scoring behaviour of a
team or individual if you just consider the previous goals they have scored. This is because
football is a low-scoring game with extremely high variance; in two similar matches random
factors might cause the number of goals scored to vary drastically, despite the total number
of high-quality chances being the same. Therefore, statisticians developed a new metric
to assess the quality of chances a team gets, rather than the end results. This metric
is called ‘expected goals’ and it has gained prominence in mainstream football coverage
in recent years [12]. Expected goals (also known as xG) is a metric which evaluates the
likelihood of any single shot resulting in a goal, based on multiple factors such as the
distance from the goal, the angle to the goal and the body part used. Each shot is given a
rating between 0 and 1 which corresponds to its likelihood of being scored. This probability
is not subjectively decided; rather it is derived from analysing thousands of shots taken
in previous matches from similar positions. Thus expected goals provides a much more
precise and reliable indicator of how many goals a team or player is likely to score in
future when compared with the coarse and volatile measure of how many goals they have
managed to score in recent games [13].

The corresponding metric to expected goals that deals with assists is unsurprisingly
named expected assists (xA). A player earns some amount of expected assists when a pass
they make is directly followed by a shot, and the amount of expected assists they earn for
that pass is equal to the likelihood of the following shot being scored [12]. Therefore, a
player who sets up a lot of high quality shooting opportunities earns a high amount of
expected assists. This metric also depends on a multitude of factors such as the type and
destination of the pass and is based on historical data.

Expected goals and assists are the key to accurate predictive models. They give a
precise measure of both a player and a team’s attacking threat, and by measuring the
opposition’s xG, the measure can indicate defensive capability too.

It would be easy to take the average xG and xA a player achieved per game in one
season and use that for their xG and xA in every game in the next season, but that misses
a key variable: the quality of an opposition team’s defence. The xG and xA a player
achieves varies significantly from game to game depending on the quality of the opposition.
Therefore, to increase the specificity of the model, the amount of expected goals and assists
a player is predicted to have in each game will be scaled up or down depending on the
opposition’s Defensive Weakness Multiplier.

A team’s Defence Weakness Multiplier (DWM) is simply a metric I have created which
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encapsulates how many high quality chances a team concedes compared to your average
Premier League team. It is calculated with the following formula:

DWM =
Team’s Total xG Conceded in a Season

1
20

× Total xG Conceded By All Teams in the League in a Season

We will use the xG data from 2023/24 season to create these DWM values that will be
used to predict points in the 2024/25 season.

We have now covered all of the point-scoring actions that a forward is eligible for.
Multiplying the likelihood of different actions occurring with the number of points each
action scores, we obtain the following formula for the number of points we predict a
forward to score in each game:

Forward Predicted Points = [2− xYC90 × 1− xRC90 × 3

+ (xG90 × 4 + xA90 × 3)× Opposition DWM]

× Average Minutes per Game
90

The subscript 90s within that formula represent a normalised value of how much of
that action we expect the player to perform per 90 minutes. It should be noted that the
xYC and xRC are not from any sophisticated statistical model, but rather from a simple
calculation of how many yellow or red cards a player received per 90 in the previous season.
We only choose to scale the points from goals and assists by the DWM, since we don’t
expect a player’s minutes and yellow and red cards to be correlated with the opposition’s
defensive quality. You can see that the structure of the formula is:

(Points per Action × Expected Actions per 90)× Average Minutes per Game
90

.

It is useful to structure the formula like this because all of the dependence on how many
minutes the player is expected to play is all encapsulated in the final term. That allows us
to use more generalised ‘per 90’ metrics within the formula for all players, regardless of
how many minutes they play.

2.3.2 Predicting Clean Sheets

A coarse way to predict how many points a player should get per week from clean sheet
points would be to take the number of clean sheets they achieved per 90 in the previous
season. As a first-order approximation, this is fine, but just as in the case of predicting
goals and assists, this neglects to take into account the quality of the opposition. In a
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similar way to how we defined the Defence Weakness Multiplier of a team, we will now
define the Attack Strength Multiplier (ASM). This is given by the formula:

ASM =
Team’s Total xG Created in a Season

1
20

× Total xG Created By All Teams in the League in a Season

It is a multiplier which essentially tells us how many more expected goals a team
creates when compared with the average team in the league. By including this value
within our calculations of clean sheet likelihood, we can personalise our predictions based
on the opposition a player is playing against. We expect a defender to be less likely to
keep a clean sheet against an opponent with a higher ASM, and so we must divide by the
ASM within our calculations.

In a similar way to how xYC and xRC are not statistical models but rather a simple
calculation of how many yellow or red cards a player earned last season per 90 minutes
they played, we will use the metric xCS per 90 (expected clean sheets per 90) to represent
the number of clean sheets a player earned last season per 90 minutes they played.

This metric is not as precise and reliable as the other metrics within the formulae as it
does not take the quality of chances conceded into account. Instead, it just focuses on the
number of clean sheets that were achieved in the previous season. This number is prone
to variance as teams can get lucky or unlucky within games due to random factors. This
variance will be minimised by the fact that this metric is built on 38 games’ worth of data,
but I feel it still could be improved if this project was to be extended. One idea might
be to model the conceding of goals with a Poisson distribution [14]. This strikes me as
valid as we have an estimation for how many goals we concede per game on average, and
given this, a Poisson distribution can tell us the probability of k goals being conceded in
this time frame. The assumption that goals occur independently of the time since the last
goal is potentially debatable and a further examination might evaluate whether this is
plausible. Nevertheless, since this project is focused more on the optimisation algorithms
themselves, this discussion will be left for a possible extension elsewhere.

Now we have a full understanding of how to predict each point-scoring action, we can
list the formulae for the predicted points of the goalkeepers, defenders and midfielders.

Goalkeeper Predicted Points = [2− xYC90 × 1− xRC90 × 3

+ (xG90 × 10 + xA90 × 3)× Opposition DWM

+ xCS90 × 4÷ Opposition ASM]

× Average Minutes per Game
90
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Defender Predicted Points = [2− xYC90 × 1− xRC90 × 3

+ (xG90 × 6 + xA90 × 3)× Opposition DWM

+ xCS90 × 4÷ Opposition ASM]

× Average Minutes per Game
90

Midfielder Predicted Points = [2− xYC90 × 1− xRC90 × 3

+ (xG90 × 5 + xA90 × 3)× Opposition DWM

+ xCS90 × 1÷ Opposition ASM]

× Average Minutes per Game
90

Using these formulae in conjunction with the fixture list, we are able to produce a
database of predicted points for each player and each week of the 2024/25 season [15]. A
sample of the model’s predicted values can be found in Appendix B.

2.3.3 A Note on Promoted and Relegated Teams

At the conclusion of every Premier League season, the three teams with the fewest points
are relegated into the division below, and the three teams with the most points in the
division below are promoted. A problem this poses to our model is that our database
does not contain statistics on these promoted teams or on their players. Consequently,
this model will not evaluate the suitability of any promoted players, and they will be
ignored in our discussions. Although this may seem drastic, in the context of FPL, the
players of promoted teams tend to rarely be chosen by FPL managers. This is because
promoted teams often struggle significantly with the quality of the Premier League, and
consequently, their players score few goals and keep few clean sheets. There are exceptions
to this rule, but generally, promoted players tend not to be good FPL choices, and as such,
this omission is not a significant problem for our model.

That being said, it is still necessary to consider the Attacking Strength and Defensive
Weakness Multipliers of the promoted teams for our calculations of other players’ predicted
points. For a placeholder value, we will assume the promoted teams have the DWM
and the ASM corresponding to the lowest values of a team in the previous season. This
reflects the fact that the promoted teams tend to be low quality and also gives us relatively
accurate estimated values for them.
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Chapter Three

The Greedy Algorithm

Before diving into the specifics of the three algorithms this project will discuss, I would first
like to lay out the constraints that any valid FPL teams must abide by. This is a critical
consideration as it informs the implementation of all three algorithms. In order to make
the game a little more challenging, FPL imposes rules which dictate the composition of
your team in certain ways. In typical FPL, you must own two goalkeepers, five defenders,
five midfielders and three forwards. During any one week, you must bench four players,
meaning the points they score during that week don’t add to your team’s total. In addition,
each player costs a certain pre-defined amount of money and the cost of your squad must
not exceed your budget of £100m. At the end of every week, you get one transfer which
you can use to swap one player in your squad for one not in your squad, so long as it fits
your budget constraints. Lastly, you may not own more than three players from any one
Premier League team.

In this project, I will be including all of these constraints, just with some minor
alterations to aid in the practicality of my code whilst still keeping the core challenges
of FPL. The main alteration is that I will exclude considering the 4 bench players. The
reason is that the bench players are typically low-cost, low-scoring and they feature in the
‘starting eleven’ rarely. As such, their contribution is minimal. Additionally, adding the
benching and squad selection mechanism of FPL to my code would be computationally
extensive whilst also negligibly impacting the evaluation and comparison of the optimisation
algorithms. Consequently, I have chosen the following constraints for the optimisation
algorithms to follow:

• The squad must have 11 players: one goalkeeper, four defenders, four midfielders
and two forwards

• The total budget must not exceed £80m. This is slightly reduced from £100m to
reflect the reduction in squad size.

• One transfer may be made at the end of each week
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• You must not have more than three players from any one Premier League team

3.1 Introduction to the Greedy Algorithm

An algorithm is called ‘greedy’ if it aims to achieve its global objective by making the locally
optimal choice at every decision point [16]. The only factor that greedy algorithms take into
account when evaluating their choices is the immediate benefit that the choice contributes
towards their overall goal. Greedy algorithms neglect the longer-term consequences of
their actions, and as such, they are unable to plan ahead and manage constraints in a
manner which might lead to more optimal solutions. Typically, greedy algorithms are
prevented from back-tracking and so these locally optimal decisions are final.

Despite the apparent short-sightedness that this approach entails, in certain situations,
greedy algorithms can not only provide good solutions, but they can actually provide
the optimal solution. Problems whose optimal solution emerges by simply taking the
best locally optimal choice at every step are said to have the ‘greedy-choice property’
[17]. A common example of a problem which can be optimally solved by using a greedy
algorithm is Dijkstra’s algorithm [18]. This algorithm is used for finding the shortest
path between two nodes in a weighted graph, a highly suitable problem for representing
transportation networks for instance. Dijkstra’s algorithm takes a greedy approach because
at every decision point, it selects the next closest unvisited node in order to minimise the
distance. It is a suitable problem for the greedy algorithm because it also has an ‘optimal
substructure’ [19]. A problem has an ‘optimal substructure’ if it can be broken down into
sub-problems and if the global optimal solution is simply the combination of the optimal
solutions to all of the sub-problems. We can see that this shortest path problem has this
structure by considering how to find the shortest distance from node A to C via B; the
shortest way to go from node A to C via B necessarily involves going along the shortest
path from A to B and then the shortest path from B to C, and hence the optimal global
solution is the combination of the optimal solutions to the sub-problems.

A greedy algorithm has both advantages and disadvantages when applied to optimising
an FPL team over the course of a season. The main advantages this algorithm has are its
simplicity of implementation and its speed of execution. By virtue of the fact it does not
consider the multitude of consequences its decisions might have in the future, the time
complexity of greedy algorithms tends to be low, typically O(n) or O(n log n), where n is
the number of objects under consideration [20].

However, there exist clear disadvantages for this approach. Optimising an FPL team
for short-term gains necessarily means that the long-term consequences of the choices
are overlooked. Players which have difficult fixtures coming up and hence reduced points
potential might still be transferred in just because they have a single high-scoring week
next. Similarly, the algorithm will fail to plan its budget and may be unable to transfer in a
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certain player in a week where they score a lot of points. This overlooking of consequences
and lack of long-term strategy makes this algorithm unsuitable for finding the optimal
solution in a game with so many constraints.

3.2 Implementing the Algorithm

Applying the greedy algorithm to any problem involves making the locally optimal decision
towards the objective at each stage. In the context of FPL, the global objective is to
maximise the total points scored over the course of the season. Hence, our greedy algorithm
will aim to add the most points to the team at each possible stage.

Throughout the season, an FPL manager must make two key sets of decisions. First
is the selection of the initial team for the first round of fixtures, known as Gameweek 1
(GW1). This initial squad selection is crucial because after GW1, only one player can be
transferred out per week, and consequently, many players in the initial team will remain
for weeks. The second key set of decisions is the weekly transfers. There are 37 possible
transfers over the course of the season, and they will dictate how the team evolves over
time.

The pseudocode for the greedy algorithm’s approach to these two key sets of decisions
is outlined below:

Selecting the Initial Team:

1. Create Constraints

• Start with a budget of £80m (represented as 800 units in the database)

• Make sure there is only one slot for a goalkeeper, four for defenders, four for
midfielders and two for forwards

• Define a limit of three players per Premier League team

2. Choose Players

• Sort the whole database of players by their GW1 predicted points score

• While the squad still has empty slots, add the highest non-chosen GW1 point
scorer to the team

• Only allow this choice if it abides by the team, budget and position constraints

• Update a counter of how many slots remain in each position, how many players
from each team have been chosen and how much budget is left

• Ensure that every selection leaves enough budget for the team to fill up with 11
players

15



Making Weekly Transfers:

1. Selecting the Transfer

• Choose a player already in the team

• Find the player with the highest predicted points for next week which could be
afforded by transferring out this player, whilst meeting the constraints

• Calculate the points differential between the player already in the team and
the potential replacement

• Do this for all players currently in the team and make the transfer with the
greatest positive points differential

The code for this greedy algorithm can be found in Appendix C.

Player Position Gameweek 1 Points

Caoimhin Kelleher GKP 0.85
Gabriel Magalhães DEF 4.64

William Saliba DEF 4.61
Illia Zabarnyi DEF 3.01

Jamaal Lascelles DEF 1.50
Mohamed Salah MID 6.18

Bukayo Saka MID 5.44
Son Heung-min MID 4.84
Anthony Gordon MID 4.15
Erling Haaland FWD 4.72
Divin Mubama FWD 0.06

Total 40.00

Table 3.1: The Greedy Algorithm’s Initial Squad Selection

Metric Value

Total Season Points 1683.20
Initial Squad Value £80m
Final Squad Value £77.5m

Average Squad Value £78.3m
Total Function Calls 50.8 million
Total Execution Time 12.9 seconds

Table 3.2: A Summary of the Greedy Algorithm’s Season

A function call is a discrete bit of computation performed by the code and the number
of function calls can be easily tracked within Python. This gives a reliable proxy for the
computational effort used in the running of some code [21].
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A full analysis of these results will be done in Chapter 6 so that they can be contrasted
with the results from the other two algorithms.
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Chapter Four

The Knapsack Algorithm

The key drawback of the greedy algorithm is its short-sightedness. Its focus on optimising
the points score of the next round necessarily means that it neglects combinations of
players which might be more optimal over the longer-term. It is this tendency which
motivates us to look for an algorithm which takes more than one week into account. The
first such algorithm we will construct is based on an algorithm that was produced to solve
the knapsack problem.

4.1 Introduction to the Knapsack Problem

Imagine having a knapsack (a hiking bag, in other words) and a range of different objects
that you might want to take with you somewhere. The objects each have a certain weight
and a certain value, and your knapsack can only carry so much weight. The optimisation
problem of trying to fit the maximum amount of value within your knapsack without
exceeding the weight limit is known as the 0/1 knapsack problem [22]. The 0/1 in the
name stems from the fact that each object can either be chosen once or not at all; no
multiple or fractional copies of the same object are allowed.

This problem is clearly analogous to our problem of selecting the optimally scoring
GW1 team in FPL because we have a range of different objects with different values and
costs associated, we have a limit on the total cost of our selections and we may only pick
a player once at most.

The algorithm I will use for solving the knapsack problem will take a dynamic pro-
gramming approach. Dynamic programming is the name given to any program which
takes a problem and splits it up into sub-problems. Once it has solved the sub-problems,
these solutions are used recursively to build up a solution to the main problem [23].

In this chapter, we will first use a recursive, dynamic programming approach to find
the optimal GW1 team. Then, we will extend our knapsack algorithm to incorporate
transfers and seek to optimise the total season points score. In the process of optimising
our total season score, we will determine the optimal number of weeks for the knapsack
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algorithm to consider in its time horizon. It should be noted that the knapsack algorithm
can provably solve the GW1 problem, but we cannot be sure whether its output for the
extended season problem will be optimal or just a relatively high-scoring solution. This
uncertainty is due to the time-varying aspect introduced by the transfer process.

4.2 Implementing the Algorithm for the Initial Team

The general idea of the recursive knapsack algorithm works by defining a function m[i, w],
which gives the maximum value we can get by considering the first i objects that are
available and having a maximum weight constraint of w. If we had x objects and a
maximum weight of y, our aim would be to find m[x, y]. The way we do this is by building
up a 2D table of all of the m[i, w] values recursively [22].

Let’s consider the following example where we have 4 objects, each given an identity
number i, each with a value of v and a weight of w. If our knapsack has a capacity for
6 units of weight, the solution to our problem is m[4, 6] - the maximum value when we
consider all 4 objects with maximum weight capacity of 6 units.

Figure 4.1: The Unfilled Table for the Knapsack Algorithm [24]

To find m[4, 6], we can fill up this table recursively with the following formula:

m[i, w] =


0 if i = 0 or w = 0

m[i− 1, w] if wi > w

max (m[i− 1, w], m[i− 1, w − wi] + vi) if wi ≤ w

We can intuitively interpret what each of these three elements means as follows:

1. Set an entry in the table to 0 if it corresponds to a total weight limit of 0 or if the
number of items being considered is 0.

2. If the weight of the i-th object is greater than the current weight constraint w, then
our maximum value is the same as if we didn’t include the i-th object at all:

m[i, w] = m[i− 1, w] if wi > w.
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3. If the weight of the i-th object is less than or equal to the current weight constraint,
we consider whether including it improves the maximum value. We compare the
maximum value if we exclude the item with the maximum value if we include it.
This is a comparison of m[i− 1, w] versus the sum of vi and the best value achievable
with the remaining weight, w − wi:

m[i, w] = max (m[i− 1, w], m[i− 1, w − wi] + vi) if wi ≤ w.

Filling the table up row by row using this formula eventually yields the following filled
table:

Figure 4.2: The Filled Table for the Knapsack Algorithm [24]

From the table, we can see that our maximum value for the weight limit of 6 units is 9.
We can work out that this corresponds to selecting items 2, 3 and 4.

Applying this to finding our optimal GW1 team, we might try and fill up a similar
table with the number of players under consideration as our i value and the total budget
constraint of our team as the w value. The only problem is that we also need to incorporate
our other constraints, such as the number of players in each position, the total squad size
and the number of players from each Premier League team. Including these additional
constraints provides a considerable challenge to our dynamic programming approach.

The way to overcome this challenge is to introduce new parameters to our objects,
turning our problem into a multidimensional knapsack problem [9]. The term ‘multidi-
mensional’ in that title simply describes the fact that each object we are examining now
not only has a value and a cost, but also some other characteristics which must satisfy a
constraint. For our situation, we want our solution to satisfy the constraints that there
is 1 goalkeeper, 4 defenders, 4 midfielders and 2 forwards. In addition, we want no more
than 3 players per Premier League team.

If we were to add a constraint for the number of goalkeepers, defenders, midfielders
and forwards, along with a constraint for the number of players in every premier league
team, this would correspond to adding 24 new dimensions to the system. If we consider
turning an originally 2D grid into a 26D grid, we will have added 22 dimensions that
have 4 possible values, 1 dimension with 2 possible values and another dimension with 1
possible value. A back-of-the-napkin calculation suggests that filling out this grid might
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take around 1013 times longer than it would without these constraints [25]. Clearly this is
unfeasible.

To address this, we aim to reduce this number of dimensions massively by considering
redundancy. We obviously can’t get rid of the position counters, but it does seem likely
that many of the team counters will end up being unnecessary considerations; how many
players from Crystal Palace or Bournemouth or Fulham do we really expect to be in our
GW1 team, considering the fact their teams score few goals and allow the opposition
to score many goals? Based on this, we first run the dynamic programming knapsack
algorithm without any constraints on how many players from each team we take. Then
we see which teams, if any, show up more than three times in our squad. Then we include
those teams in our constraints and add them as dimensions, and run it again. We do this
until our initial GW1 squad doesn’t break our rule of 3 per Premier League team, and then
we have successfully found the optimal team without introducing unnecessary dimensions.

So, we set up our recursive function of all of these parameters (except for number
of players per team) and run the Python code. We find that the number of operations
required is far too many to practically compute. We can intuitively understand this by
considering the number of possible states in this multidimensional space. If we consider
the budget ranging from £51.5m (the lowest possible) up to £80m in £0.1m steps, that’s
286 possible values. If we look at all 475 players plus the case of examining none of them,
we have 476 possible values. Additionally, we can have 0 or 1 goalkeepers, between 0 and
4 defenders and so on. Multiplying all of these dimensions together, we have state space
that has more than 20,000,000 entries. This is too computationally extensive to run, so
one again we consider how to make some simplifications.

Since we are only trying to find the optimal GW1 team here, we can confidently cut
down the number of players we consider in our recursive programme. This idea is called
pruning, and allows us to reduce our search space by removing unnecessary elements [26].
To have a high level of confidence that the players we are getting rid of won’t be important,
we choose to remove players with low GW1 predicted points scores and also with bad
points to cost ratios. This ensures that we don’t remove any players who could be big
point scorers or useful bargains for our GW1 team.

We prune our dataset to only include the top 5 goalkeepers in GW1 points and top 5
goalkeepers in GW1 points to cost ratio, top 20 in defenders and midfielders and top 10 in
forwards. The ratio of these numbers reflect the ratio of these positions in our 4-4-2 team
formation.

When we run our knapsack algorithm on this pruned dataset, we see that the only
team which is represented more than 3 times is Arsenal. Thus, we include Arsenal within
our constraints and run it again. Once we’ve done that, we see our optimal GW1 team
according to the recursive knapsack algorithm is the following:
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Player Position Gameweek 1 Points

Jordan Pickford GKP 3.31
Gabriel Magalhães DEF 4.64

William Saliba DEF 4.61
Pedro Porro DEF 4.13

James Tarkowski DEF 3.72
Mohamed Salah MID 6.18

Bukayo Saka MID 5.44
Son Heung-min MID 4.84

Brennan Johnson MID 3.74
Alexander Isak FWD 4.42

Dominic Solanke FWD 3.88

Total 48.91

Table 4.1: The Recursive Knapsack Algorithm’s Initial Squad Selection

Metric Value

Total Function Calls 439 million
Total Execution Time 91.7 seconds

Table 4.2: The Recursive Knapsack Algorithm’s GW1 Selection Performance

We can be confident that this is not only a good estimation but actually the exact
optimal GW1 team, so long as we trust that none of the players who were pruned out of
consideration might have been used. We can take confidence that this team is indeed the
exact optimal GW1 team by decreasing the amount of pruning we did.

If we decrease the amount of pruning we do so that we actually consider the top 10, 40,
40 and 20 players in each position and in points and points per cost ratio respectively, we
notice we still get the same optimal GW1 team. Therefore, we can have high confidence
that the team is exactly optimal.

The code for this GW1-focused implementation can be found in Appendix D. There is
one key difference between the code’s process and the idea of filling up a multi-dimensional
array from the bottom up, as shown in Figure 4.1. The key difference is that the code
implements a process known as memoization [27]. Rather than filling up the table from
the bottom up, the code fills up the table from the top down. In addition, it doesn’t
actually fill up all of the squares in the grid either. It only fills up the squares which are
relevant to the branching decision tree. This approach of only filling grid entries which are
necessary for our final answer reduces the amount of calculations we need to do whilst
maintaining the integrity of our answer.
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4.3 Implementing the Algorithm for the Whole Season

The recursive knapsack algorithm is particularly suited to finding the highest scoring GW1
team, but when we extend our problem to a whole season, the time-varying aspect presents
a challenge. We need to consider a way of choosing transfers which is more long-term
focused than the greedy algorithm.

To do this, I consider a new approach. Instead of just optimising the GW1 score and
then finding transfers afterwards like the greedy algorithm does, the approach will be to
optimise the team’s score on a rolling k-week basis. What I mean by this is the following:
to pick the initial team, find the team which has the highest total score for weeks 1 to k.
This will be solved by a recursive knapsack algorithm. Then, for the transfer before GW2,
we iterate through our players and search for the transfer which would most increase our
team’s predicted points score in weeks 2 to k+1. Then, before GW3, we loop through our
new team and transfer in the player which will most increase our total predicted points
score in weeks 3 to k+2. This transfer strategy is quasi-greedy, though it has a longer-term
focus, so this season-long approach is a sort of knapsack-greedy synthesis.

The motivation behind this approach is as follows: we want to ensure our team is
focused on more than just the next week. By looking ahead to the next k weeks, we can
have a more long-term view.

A key question which emerges from this approach is which k-value is optimal? In other
words, how many weeks ahead should we consider a player’s performance in the process of
choosing transfers? Since the team can make one transfer per week and there are 11 players
in the team, an entire team could be changed every 11 weeks if we so wanted, and as such,
a suitable suggestion might be that we should look 11 weeks ahead. In counterpoint to
this, some extremely valuable players such as Cole Palmer or Mohamed Salah are unlikely
to ever leave the team, and as such, there may only be a few members of our team who
ever get transferred out and so we only need to look a short time ahead.

These arguments suggest the right time horizon lies somewhere between 1 week and 11
weeks ahead. To analyse this and ensure our approach scores the maximum season-long
score, we will run this approach for all k values from 1 to 11 and analyse the results.

Interestingly, as a side note, a time horizon of 1 corresponds exactly to the transfer
process of the greedy algorithm. In fact, in the case where we choose k=1, we recreate the
greedy algorithm except that it starts with the optimal GW1 team. This is fortunate as it
also allows us to evaluate how much of a problem the initial squad selection of the greedy
algorithm was to its full season performance.

Having run the code with time horizons of 1 to 11 weeks, we obtain the following
results for the total season score:
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Figure 4.3: The Points Score of the Knapsack Algorithm For Different Time Horizons

Looking at this graph, we can see that the the total season points scores fell in a
rough range of 1730 to just over 1750. The peak total season points score was 1750.14,
corresponding to a time horizon of 2 weeks. Close behind was the time horizon of 7 weeks
with a season score of 1748.13 points. The lowest point score was 1734.86, corresponding
to the largest time horizon of 11 weeks. In fact, the three lowest scoring seasons were for
the three largest time horizons.

After running this code, I was struck by just how flat the distribution is; from the
highest to lowest point scores, the season score only varies by around a percent. I would
have guessed that there would be a unimodal distribution, approximately around k = 6,
with quite a high drop off at the edges. I expected this peak to be around 6 because I
expect some players to remain in the team the whole season due to their high points to
cost ratio, and so we don’t need to be thinking very far ahead to consider how to swap
out all of the players we may want to change.

The relatively flat distribution of total season points score against time horizon suggests
that the knapsack algorithm is not overly sensitive to the value of k, provided it takes a
reasonable value of approximately 2− 7. In this range, the algorithm is putting together
a team of very strong players whilst striking a balance between short-term adaptability
and long-term preparation. Those teams with smaller k values may be capitalising on
particularly high-scoring moments for individual players while neglecting to plan ahead
enough. Those with larger k values are likely to be having more consistent point scores,
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but failing to adequately realise the value of a short-term player pick. I hypothesis that
these effects are potentially balancing out, leading to the flat distribution.

With regards to why the points scores drops off for very large k values, I suspect that
at these large k values we are becoming insensitive to important fixture changes in the near
future. A long time horizon of k = 10 is enough time for difficult fixtures and easy fixtures
to roughly cancel out and so our transfer strategy basically becomes fixture insensitive.
Consequently, we end up constantly swapping high-quality players at essentially random
times based on whether or not they are in the team at that time. This loses the benefit of
having transfers at all.

I believe that the simplified version of Fantasy Premier League which I am discussing in
this project makes it such that the gains from planning ahead are diminished. Supporting
this argument is the fact that in typical FPL, your squad is made of 15 players, and
you can choose any 4 of them to be on the bench in any week, meaning the points they
score aren’t counted. This allows you to pick different combinations of players which can
navigate the fixture schedule more successfully, and introduces even more complexity in
planning ahead. This partly helps to explain the flatness in this distribution of total season
points.

If we take the k value which strikes this balance best, the results for this algorithm is
as follows:

Metric Value

Total Season Points 1750.15
Total Function Calls 1.31 billion
Total Execution Time 281 seconds

Table 4.3: The Recursive Knapsack Algorithm’s Total Season Performance for k = 2
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Chapter Five

The Genetic Algorithm

5.1 Introduction to the Genetic Algorithm

This chapter draws upon the introduction to genetic algorithms laid out in the textbook
‘Genetic Algorithms - Principles and Perspectives’ by C. Reeves and J. Rowe [28].

In 1859, Charles Darwin published his book ‘On the Origin of Species’, and introduced
his concept of evolution by natural selection to the world [29]. He presented natural selection
as the mechanism by which traits that aid an organism’s survival become increasingly
prevalent within a population over time.

There are three key processes which enable natural selection to produce increasingly
well adapted organisms: mutation, crossover and selection.

A mutation is an occurrence where a small part of an individual’s genetic code is
randomly altered, introducing a new trait to a population.

In crossover, instead of random changes creating new genetic code, individuals within
the population combine some of their existing genetic code in their production of a new
offspring. As our understanding of DNA and genetics has improved over time, so too
has the importance with which biologists regard crossover to the evolutionary process.
One leading evolutionary biologist Ernst Mayr has called it ‘the primary source of genetic
variation’, surpassing that of mutation [28].

Finally, in selection, we see that individuals less suited to the environment are less likely
to survive and reproduce. This means their genetic information is prevented from being
passed to the next generation. Consequently, we observe an increase in the concentration
of well-adapted genes within the population over time [30].

Inspired by this process, genetic algorithms use concepts of mutation, crossover and
selection to obtain highly-satisfactory solutions to complex optimisation problems [31].
Translating the language of evolutionary biology into our mathematical language, we
consider any valid solution to an optimisation problem as an organism within a population.
(Since individuals are characterised by their chromosomes, in genetic algorithms, the
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word chromosome is often used interchangeably with the word organism. I will use the
word organism here for ease of understanding). How good the solution is at solving
the optimisation problem is akin to how well adapted an organism is to survive in its
environment. A genetic algorithm takes a large number of trial solutions as an initial
population and then exerts the processes of mutation, crossover and selection on those
solutions over many generations. At the end of the process, the best performing solution
is extracted and used as a high-quality solution to the problem.

A template for a genetic algorithm is shown below in Figure 5.1 [28]. The termination
condition might correspond to reaching a target score you want your optimisation solution
to achieve or a number of generations you want to run. The crossover and mutation
conditions are typically probabilistic factors which control how many organisms to combine
or mutate per generation.

Figure 5.1: A General Template of a Genetic Algorithm [28]

Before putting this theory into practice and running this type of algorithm on an FPL
team selection problem, some discussion of the general strengths and weaknesses of genetic
algorithms might inform our implementation.

Starting with the strengths of genetic algorithms, the predominant advantage is that
they can cover many different options in the search space [32]. By virtue of the vast number
of possible player combinations, the number of valid FPL teams is vast. Consequently, the
more player combinations that an algorithm can cover, the more likely it is that it will
reach some high-scoring outcome. In contrast to the greedy and knapsack approaches, a
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genetic algorithm will start with many different valid teams, and generate many more,
giving it a unique advantage in this aspect.

Another advantage of genetic algorithms is that they can produce more unique and
creative solutions to problems than other approaches. This is because they avoid getting
stuck in locally optimal solutions like the greedy algorithm does by adding in random
mutations.

This advantage supports the idea that the genetic algorithm might be able to build on
the work of the knapsack approach in the previous chapter. In the knapsack approach,
we had to choose some fixed time horizon of weeks over which our team would try and
optimise its team’s score. One drawback of this was that this time horizon was fixed,
and so the team was not able to think short term when the long-term state of the team
was good, nor could it think long-term when the short-term state of the team was good.
We would expect that the optimal season-long score would come from the approach that
dynamically adjusts its time horizon depending on whether the upcoming fixture difficulties
are imminent or further down the line. In this vein, the genetic algorithm doesn’t have a
fixed future time horizon, and so the best performing solutions it outputs are likely to
dynamically think on short-term and long-term time horizons at the right points of the
season.

One last advantage of the genetic algorithm is that it enables parallel processing [32].
Parallel processing is a practical implementation technique in computing where one large
compute problem can be broken down into separate problems which do not depend on
each other. Consequently, these problems can be distributed to different processors and
executed in parallel, vastly speeding up the execution time [33]. In the genetic algorithm,
there is no sequential order in which different solutions in the population must be dealt
with, and thus parallel processing can be done here. This separates this algorithm from
the greedy and recursive methods which necessarily require sequential processing of either
a single solution or a single iterative function.

The key weakness of the genetic algorithm is that it is computationally extensive to
run. Even if different solutions are evaluated in parallel, the algorithm may require a large
intial population and many generations to start obtaining high-quality solutions.

Another weakness to consider is that the genetic algorithm gives no guarantee of
optimality. Unlike the knapsack algorithm which could find an optimally scoring team
for GW1, the genetic algorithm cannot for certain know when it has found an optimal
outcome. Tied to this is the dependence of the performance of the genetic algorithm on
the parameters we use for how often mutations and crossovers occur. Finding values for
these parameters which give high scoring solutions might take a lot of experimentation.
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5.2 Adapting the Algorithm for FPL

Let’s now apply this algorithm to the problem of optimising the total points score of a
Fantasy Premier League team over the course of a season.

The organisms which we will be mutating and breeding to produce new generations
will be valid solutions to the FPL problem; in other words, an organism here is an initial
team along with a transfer strategy for the season.

The first thing we must do is create an initial population of solutions. Instantly,
we are confronted with the problem of how large to make our initial population. A
larger population would span a larger number of possibilities, but also would be more
computationally extensive whilst also potentially being redundant if we have lots of similar
teams within it. It turns out that a range of studies have suggested that population sizes
of around 30 are adequate in most cases [28]. For our purposes, we will adjust our initial
population size in the ballpark of this figure, and examine how this number affects our
final result.

A related question is whether it is optimal to seed our initial population with high-
quality solutions that we have obtained from previous methods; in our case, that would be
by using our known solutions from the knapsack algorithm over the time horizons of 1
up to 11 weeks, which all score very highly. Views differ in regards to whether seeding
high-quality solutions into the initial population is a good idea. This is because seeding
good-quality solutions might cause the algorithm to converge too quickly on a specific
form of solution which might not be optimal. That being said, others have found that
seeding good solutions helps genetic algorithms find better solutions much faster than
from a random start [28]. For the sake of completeness, we will run one simulation with
a random starting initial population, and another with a large number of good quality
solutions seeded in.

Having built our initial population, we now want to apply mutations and crossover to
it.

The mutation aspect of a genetic algorithm aims to introduce variation into the
population. Applying this to FPL, this corresponds to taking an existing solution and
randomly swapping out one player for a valid replacement. It should be noted that, just
like in real evolution, it is not necessary that this mutation always needs to be beneficial; so
long as the mutation is beneficial sometimes, the dynamics of natural selection will ensure
that good mutations are often propagated forward through the generations. Applying
this to FPL is challenging because mutating one player selection has knock on effects for
future transfers. In writing my code, I produced a lengthy pseudocode structure for this
mutation process to overcome this problem. The pseudocode is available in Appendix E.

The crossover aspect takes two parent organisms and combines them somehow to
produce new unique offspring. In an FPL context, this corresponds to taking two valid
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solutions and taking elements from each to produce a new solution. Implementing crossover
in this FPL context might be challenging as it requires finding a point within a season
where two different solutions have the exact same team. Once two solutions have been
found to have the same team one week, we can switch their subsequent transfer strategies,
producing two new offspring that are a recombination of their parents. I anticipate that
for a randomly generated population, finding these crossover points will be vanishingly
rare, but when they are found, they may produce a drastically improved offspring solution.

Finally, we come to the selection aspect. At the end of one iteration, we now have a
larger number of solutions than we started with, because we’ve created new ones with
mutations and crossover. We thus want to cut down our population again by selecting
solutions based on their performance. The selection aspect of our genetic algorithm will
act with respect to the total season points score; this is our measure of how well our
organism solves the optimisation problem, and hence is our analogue to the suitability of
the organism to its environment. After each generation, we want to ensure that the best
solutions propagate to the next generation, but we also don’t want to be so harsh that we
kill off all the diversity which might become fruitful later on.

One common way to do this is known as the roulette-wheel method [28]. In this method,
each solution within the population is given a probability of being selected proportional
to its fitness (in our case, its total points score). During the selection stage, we select
solutions without replacement until we have the number of solutions we want to have in
our next generation. This method ensures that better solutions are more likely to get
through, whilst still maintaining diversity throughout generations.

One thing to add to the roulette wheel selection process is a concept known as elitism
[28]. Elitism is where a very small number of the absolutely highest scoring organisms
within the population are guaranteed to go through into the next generation, and are
shielded from the roulette wheel. This can stop the population from undesirably reducing
its maximum fitness overtime, and it provides a fail-safe to prevent the roulette wheel’s
randomness being too damaging to progress. In our algorithm, I have chosen to keep the
top 5% of the solutions immune from the roulette wheel selection.

The final termination condition of this whole process is the number of generations we
wish to run.

5.3 Implementing the Algorithm

5.3.1 Starting With a Random Population of Solutions

To evaluate the effectiveness of the genetic algorithm and to observe the significance of
seeding the starting population with strong solutions, we first use a randomly generated
starting population.
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Alongside our analysis of the usefulness of seeding, I also felt interested to see how
the number of generations and size of the initial population affected the score of our
best-performing solution. As such, in our analysis we will run the genetic algorithm for
a large number of generations so we can see how the output of the algorithm changes
through the generations. We will also vary the size of our initial populations, using sizes
of 20, 30 and 40 as well. These values balance computational complexity whilst also being
in the range that should give adequate genetic diversity.

The code for running the genetic algorithm with randomly generated teams can be
found in Appendix F. The code for the seeded version of the genetic algorithm is almost
exactly the same, so it will be omitted in the interest of brevity.

To try and guide our mutations and initial squad selections to be high quality, I will
implement a small level of pruning. We will only consider the top 10 goalkeepers, 40
defenders, 40 midfielders and 20 forwards in the categories of total season points and total
season points per cost ratio.

To figure out how many generations are needed to get a representative view of how
our algorithm performs, I ran the genetic algorithm on a population size of 20 for 150
generations - a very extensive run. This yielded the following data:
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Figure 5.2: A Line Graph of Best Season Score Against
Generation for a Random 20 Solution Population

Seeing how the best season score virtually plateaued around the 100 generation mark,
and acknowledging the fact that although this might incrementally improve forever, the
rate of improvement was slowed drastically at that point, I made the decision to do all my
analysis up to generation 100.
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After running the code a few times, I noticed that there was some random variation
between the results produced by different runs. I ran four simulations with a population
of 20 solutions, and this gave the following results:
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Figure 5.3: A Line Graph of Best Season Score Against
Generation for Four Runs with Populations of 20 (Random, No Seeding)

We can see that there is a very large variation in the progression of the algorithm in
these four runs, owing to the random aspects of the initial population selection, mutation
function and crossover function.

This makes comparing the effect of different population sizes challenging. Even so, I
ran four simulations for populations of 30 and of 40 each as well. If we take the average
season score at each generation for these different population sizes to try and reduce the
effect of randomness, we get the following plot:
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Figure 5.4: A Line Graph of Best Season Score Against
Generation for Three Different Population Sizes (Random, No Seeding)

Looking at the early generations, there is a correlation between the size of the population
and the best score of the initial population. This makes sense as the larger population
simply has more opportunities to randomly create a high-quality solution.

By the end of the 100 generations however, the correlation is less strong, as the four runs
with a population size of 30 actually had a better best season score than the population of
40 did. I believe this demonstrates the very large effect of randomness within the mutation,
crossover and selection processes that the four repeats have only marginally mitigated.

I would’ve taken a larger sample of code runs and obtained more accurate averages
but each run wasn’t quick; each single one took at least 5 and up to 10 minutes. It seems
that intrinsically the genetic algorithm’s results are very variable for a randomly selected
population, and the benefit of a larger population is marginal in comparison to the size of
that variation.

I would say that based on this data and an understanding of the process at play, I
believe a larger population size on average does lead to better results, but the significance
is marginal above a population size of around 20 and the random variability inherent in
the process reduces the significance of this effect.

The average time taken and number of function calls made for each of these runs are
displayed below too.
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Metric Pop. = 20 Pop. = 30 Pop. = 40

Highest Total Season Points 1418.09 1437.34 1434.74
Total Function Calls 1.21 billion 1.87 billion 2.54 billion
Total Execution Time 291 seconds 445 seconds 597 seconds

Table 5.1: The Genetic Algorithm’s Average Performance for
Differently Sized Random Initial Populations

We can see that the total season score was relatively similar for all three runs, differing
by approximately 2%. In terms of how computationally extensive each run was, we notice
that the total function calls and time taken scale roughly linearly with the population
size. Consequently, we see that using an initial population of 20 achieved the best ratio of
computational effort to the score of the best solution.

Interestingly, we an see that the population of 30 managed the best result of them all.
This fits with the idea mentioned earlier that a population size of around 30 can be more
than adequate for having enough genetic diversity to obtain a strong solution [28].

5.3.2 Starting With a Seeded Population of Solutions

Naturally building on this, we seek a way to seed our initial populations with high quality
solutions.

To seed our initial population with high quality solutions, we will conveniently take
the 11 solutions we obtained in Chapter 4, each corresponding to a time horizon value of 1
to 11 weeks. These solutions were all found to have high total season scores, and so are
perfect for our purpose.

The first way I aimed to implement this was by taking our 11 high-scoring solutions
and combining them with 29 randomly generated solutions, forming an initial population
of 40 solutions. I ran this process for 100 generations and yet found no improvement
whatsoever in the best-scoring solution in the initial population, which was the k = 2

solution from the earlier knapsack method.
Puzzling over this, I hypothesised that the random populations were so far below the

seeded populations that they had little impact in the process.
Taking this into account, I ran a simulation with an initial population of 44 solutions.

11 of those solutions were the previously found 11 high-scoring solutions, and the remaining
33 solutions were made by copying these 11 solutions 3 times, and mutating each copy
once. This allowed our process to search a larger space whilst having very strong starting
solutions.

Once again, after running these 44 solutions through 100 generations of crossover and
mutation, still no improvements were found. This surprised me. To see why this might be
the case, I tracked not only the best fitness each generation but also the average fitness.
The results are shown below.
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Figure 5.5: A Line Graph of Best Season Score and
Average Season Score for a 44 Solution Seeded Population

We can see that the average fitness dropped from approximately 1720 at the start,
before bouncing around unpredictably in the range of 1640 to 1700 points for the remainder
of the run. That said, once again we failed to beat the knapsack k = 2 score we had in
the initial population.

I believe we can understand why this is the case by considering the impact of the
average generational change. Our starting teams are very high scoring, each with a finely
calibrated combination of players over the season that were chosen to navigate upcoming
fixture difficulties. In our genetic algorithm, the mutations are random, and therefore, the
average mutation will bring in a less well-suited player to the team. It is precisely because
our initial teams are so good that our mutations are negatively affecting our average total
season score. This is in direct contrast to the effect of the genetic algorithm’s mutations
in the case where the population was randomly selected.

To improve our algorithm, we want to increase the benefit of the average generational
change so that we reach a best score of greater than 1750 before plateauing.

To try and achieve this, I made three changes. First, I increased the level of pruning.
Previously in our code, we had pruned the available players for selection to be the top 10
in total points and points to cost ratio for goalkeepers, top 40 for defenders, top 40 for
midfielders and top 20 for forwards. To improve this, we pruned much more aggressively,
only allowing the top 5, 20, 20, and 10 players in each position and category to be available
for selection.
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Secondly, I increased the amount of mutations drastically. Instead of each generation
performing our crossovers and then mutating half of our population and performing
selection, we will take our population, perform crossover and then mutate all organisms in
5 different ways. Then we run the roulette wheel selection. This gives us more chance to
hit a successful mutation each generation.

Lastly, I only used the k = 2 solution for our seeding. Essentially, this corresponds to
creating a population of mutants of the best solution found in the knapsack process to see
if we can find any improvement whatsoever.

Because of the high increase in the mutation rate, I reduced the population to 10
solutions to ensure the code could be run in reasonable time. This run took approximately
40 minutes, and the results are shown below:
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Figure 5.6: A Line Graph of Best Season Score Against Average Season Score
for a 10 k=2 Solution Seeded Population With High Mutation Rate

Once again, we see the familiar pattern of the average season score of the solutions
in the population languishing a significant distance from the best season points score of
the solution in our initial population. In fact, in this set up, we are bouncing around the
1650 mark and below for most of our generations, below the average of the 44 population
seeded simulation.

Just to see if I could ever achieve a better solution than the solution obtained for the
recursive knapsack with a time horizon of k = 2, I coded a very simple Python script,
adapted from our original genetic algorithm code in Appendix F. In the process, I took a
single k = 2 solution and just mutated it up to 15 times, scoring it each time, and then
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discarding it and trying again. I ran 50 cycles of this and in every single case, no solution
better than the k = 2 solution was found.

To summarise our results from all of the different seeding processes, we can make a
few key observations.

When looking at the random population process, there seemed to be a weak correlation
between population size and the best score produced, but the variability within the results
made the significance of this correlation small. With regards to population size, increasing
the population size above 30 seemed to have no positive effect on the performance of the
algorithm. The genetic algorithm was able to improve a random set of initial populations
substantially over 100 generations, increasing its best score by around 100 points on
average.

Considering population seeding, seeding our initial population with high-scoring solu-
tions drastically improved the performance of the algorithm. Comparing the best solution
that the random and seeded populations achieved is slightly unfair since the best solution
the seeded population achieved came from the seeding. However, if we compare the average
score the populations achieved over the generations, the seeded populations settled at a
steady score of around 1680 points, much larger than the plateaus the random populations
seemed to reach at around 1425 points.

Finally, we found the genetic algorithm doesn’t always guarantee improvement. Partic-
ularly in the case where we seed with very high-scoring solutions, the genetic algorithm’s
process of mutation and crossover has a net negative effect. I hypothesis this comes from
the mutations disturbing the delicate balance and future planning that the high quality-
solutions necessarily have. That said, the genetic algorithm was effective in increasing the
average and best scores achieved by a random population over time.
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Chapter Six

Comparison of Algorithms

In this chapter, I will provide a comparison of the outcomes achieved by the three
algorithms. I will discuss key aspects including the quality of the solutions they obtained,
their computational efficiency and the difficulty in coding and implementing them.

For comparison purposes, I will be using the k = 2 time horizon recursive solution, and
the solution produced by the random genetic algorithm for a population of 30 solutions.
This is because both of these were the best performing results for the various iterations in
their chapters. I will not be including the results from the seeded genetic algorithm as it
failed to improve on the recursive knapsack solution, whilst also only obtaining its high
score as a result of it.

Below is a table and some plots summarising the key findings of these three algorithms:

Metric Greedy Recursive (k=2) Random Genetic

Highest Total Season Points 1683.20 1750.15 1437.34
Total Function Calls 50.8 million 1.31 billion 1.87 billion
Total Execution Time 12.9 seconds 281 seconds 445 seconds

Table 6.1: A Comparison of the Key Results of the Three Algorithms

Firstly, let’s compare the key measure of success of any optimisation algorithm: how
well the best solution they obtained scored. The recursive knapsack algorithm for a time
horizon of two weeks achieved the best total season points score of 1750.15. Approximately
4% below this, the greedy algorithm scored 1680.20 and then much worse than either of
these scores, the random population genetic algorithm scored a lacklustre 1437.34 points.

Taking the total function calls made by each algorithm as a proxy measure of the
computational effort that each algorithm took to run, we can add some useful context.
The greedy algorithm was by far the least computationally intensive, only making 50.8
million function calls. Taking around 20 times longer to run, the next most intensive was
the recursive knapsack algorithm, making 1.31 billion function calls. Lastly, by far and
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away the most intensive algorithm of our three was the genetic algorithm, making 1.84
billion function calls.
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Figure 6.1: A Bar Graph of Best Total Season Score For Each Algorithm
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Figure 6.2: A Bar Graph of Total Function Calls For Each Algorithm
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Figure 6.3: A Scatter Plot of Best Season Score Against Total
Function Calls For Each Algorithm

A key quantity for the comparison of these algorithms is not only these quantities in
isolation, but also their ratio; more function calls might not necessarily be a bad thing if it
comes with a payoff of very high-quality solutions being obtained. Looking at Figure 6.3,
we can see a scatter plot of the best total season score of each algorithm against the total
function calls it made. If we consider a line from the origin to each point, the gradient
of this line is proportional to the ratio of the best total season points score to the total
function calls. Consequently, this gradient might be said to represent the efficiency of each
algorithm in balancing the quality of the solutions to the computation required. Thus,
we can see that the greedy algorithm was by far the most effective, with the recursive
knapsack algorithm in second place and the random genetic algorithm in third. Taking
this ratio explicitly, the greedy algorithm obtained 33.13 points in its total season score per
million function calls, the recursive knapsack algorithm obtained 1.34 points per million
function calls and the random genetic algorithm obtained 0.77 points per million function
calls.

Alongside these concrete measures of performance, it is also worth considering how
challenging each algorithm was to practically implement. The easiest code to write by far
was the greedy algorithm, as each step in the pseudocode was simple and logically followed
naturally. The initial team and transfers were picked by simply sorting our database
and choosing the highest scoring valid replacement, meaning the hardest part was simply
checking the constraints.

The recursive knapsack algorithm was more challenging as it required setting up
memoization by assigning each state in the process a unique ID and coding the recursion
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process. However, once that recursion was coded, the process was complete.
By far the most challenging to implement was the genetic algorithm, as reflected in the

length of the final code, and the length of the pseudocode of just one section, as shown in
Appendix E. Implementing the mutation and crossover process whilst trying to ensure
valid teams were still produced took extensive writing and debugging, and many edge
cases had to be covered. These factors should be taken into account when assessing the
practicability of each algorithm for running in real-world contexts.
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Chapter Seven

Conclusion

In summary, this project found that the recursive knapsack method was the most effective
at obtaining high-quality solutions to the problem of selecting optimal FPL teams over
the course of a season. Its extremely strong initial squad selections from the recursion
combined with its well-chosen time horizon for considering transfers made it the best
choice of the three.

The greedy algorithm’s short-term focus led to poor GW1 selections, reducing its total
season score dramatically. Interestingly, when we compare the k = 1 knapsack solution
with the greedy algorithm, they share the same transfer philosophy but simply differ in
their starting teams. The resultant effect of having a poor starting team is reflected in
their different scores: 1683.20 points for the greedy and 1746.54 points for the k = 1

knapsack solution. Despite this shortfall, the greedy algorithm was by far the most efficient
in how good its solutions were, relative to the computational effort required. In a real-life
context, if the search space was simply too large for the recursive knapsack algorithm to
run in suitable time, the findings of this project suggest the greedy algorithm is a suitable
approach for finding a good-quality solution.

The genetic algorithm’s approach was shown to be highly ineffectual in this specific
context. Despite the fact it was able to slowly improve the total season score of a random
population over time, its solutions plateaued far below the solutions of the other two
algorithms. I hypothesise that this comes from the fact that there are simply far too
many available players and transfer choices than can be adequately investigated with
a purely random approach. In addition to its poor output, the genetic algorithm was
also by far the most computationally effortful algorithm to run. I anticipated that this
computational complexity would be beneficial as it would allow the algorithm to effectively
plan on a dynamically changing time-horizon, given enough generations to make this
organically happen. I was proved wrong by the findings, and I feel that the specific context
of this problem with its multiple constraints and highly-dependent transfer strategy led
the randomness of the genetic algorithm to ultimately be a significant weakness.

There are many ways that the scope of this project could be extended that occurred
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to me during the process.
The first is an adaptation to the mutation strategy of the genetic algorithm which

might help it produce higher-quality solutions. If instead of the purely random mutation
strategy, the mutation process had a weighted probabilistic element, such that higher
quality mutations were favoured, the outcomes might be considerably better. Implementing
this could be done in conjunction with the tuning of other parameters, such as the amount
of elitism and the rates of crossover and mutation. These values in this project were chosen
relatively arbitrarily, so a further examination in another project could be fruitful.

Another extension to this project would be to look at the full, unsimplified version of
FPL. This involves selecting 15 players rather than 11, and allowing any 4 of them to be
on the bench each week, meaning their scores aren’t counted. This aspect was neglected
due to the increasing complexity it would add. However, I believe the algorithms coded
here could serve as a suitable base for future work which includes the benching component.

Lastly, perhaps the most significant extension would be to consider other optimisation
algorithms that might exceed the scores achieved in this project. The one that struck me
as potentially being the most useful given the results we’ve obtained in this project is
the beam search algorithm. The beam search algorithm is a way of exploring a decision
tree that is far too large to exhaustively search [34]. In our context, since we already
have very good starting teams from the knapsack algorithm, I would suggest using the
beam search algorithm in conjunction with it to navigate the transfer strategy process.
In the beam search algorithm, a fixed number of strong-looking decisions are evaluated
at each step, and only a small number of those are then chosen. Then, we consider all
of the strong-looking decisions that we could make from these new positions, and then
we choose a fixed number of those. This process can be conceptualised as following the
most fruitful-looking branches down a decision tree, without our exploration growing
exponentially more vast. Because we know that our initial GW1 squads from the knapsack
algorithms are provably optimal for scoring the most total points in the first 1 to 11 weeks,
I feel that the best way to improve the solutions obtained in this project is by improving
our transfer strategy following that, and hence the beam search algorithm is a great choice.

In conclusion, the aims of this project - to create a predicted points model and code and
evaluate three optimisation algorithms - have been achieved. Despite having extensively
examined these three optimisation algorithms, the extensions that I have laid out above
show that there are many ways in which work on this topic could be developed even
further, ultimately leading to an improvement in our ability to tackle problems of this
kind.
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Appendix A

Sample of Database

Figure A.1: A Screenshot of the Database Used by the Model [11]
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Appendix B

Model Predictions

Figure B.1: A Screenshot of the Excel Sheet Containing the Model’s Predicted Points
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Appendix C

Greedy Algorithm Code

0
import pandas as pd
import cProfile
import pstats
import time

def get_player_data ():
""" Get our FPL database from the csv file that has all of our predicted

points data and puts it in a dataframe."""
player_data = pd.read_csv('Player Points Database.csv')
# The database we used had numbers to represent the positions. We now map

from the number to the positions and add this information to a new column.
10 position_map = {

1: 'GKP',
2: 'DEF',
3: 'MID',
4: 'FWD'}

player_data['position '] = player_data['element_type '].map(position_map)
return player_data

def set_up_constraints ():
"""Here , we put our budget , position and team constraints into a dictionary

."""
20 return {

'budget ': 800,
# 1 million pounds corresponds to 10 budget units in the database.
'positions ': {

'GKP': 1,
'DEF': 4,
'MID': 4,
'FWD': 2},

'max_players_per_team ': 3,
'min_costs ': {

30 # These come from just looking at our database.
'GKP': 36,
'DEF': 37,
'MID': 42,
'FWD': 41}}

def choose_starting_team(player_data , constraints):
""" This functions takes in our player data and constraints and selects our

initial GW1 team by using the greedy algorithm."""
# We sort our dataset by highest GW1 points to lowest and put it in a new

dataframe.
sorted_players = player_data.sort_values('GW1 Points ', ascending=False)

40 # We start with an empty list.
selected_team = []
spent_so_far = 0
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# We create a dictionary to track how many players we've picked so far in
each position.

position_counter = {pos: 0 for pos in constraints['positions ']}
# We also create a dictionary to track how many players we've picked from

each team in the league.
team_counter = {}

# We loop through each row of our dataframe which corresponds to each
player.

for _, player in sorted_players.iterrows ():
50 # This breaks the loop if our team has been fully picked.

if len(selected_team) == 11:
break

# This skips this row if this player 's position has been filled up in
the team already.

if position_counter[player['position ']] == constraints['positions '][
player['position ']]:

continue

# This skips this row if the player 's club already has three other
players in the team.

if team_counter.get(player['team'], 0) == constraints['
max_players_per_team ']:

60 continue

# We need to make sure that we have enough money left after this choice
to fill up the rest of our team.

positions_still_needed = {
pos: constraints['positions '][pos] - position_counter[pos]
for pos in constraints['positions ']}

money_needed_for_remaining = sum(
constraints['min_costs '][pos] * (count - (1 if pos == player['

position '] else 0))
for pos , count in positions_still_needed.items ())

70
# This skips the row if we don't have enough money left to put them in

the squad.
money_available = constraints['budget '] - spent_so_far -

money_needed_for_remaining
if player['now_cost '] > money_available:

continue

# Finally , if we haven't skipped by now , we add the player to our
initial team.

selected_team.append(player)
spent_so_far += player['now_cost ']
position_counter[player['position ']] += 1

80 team_counter[player['team']] = team_counter.get(player['team'], 0) + 1

# We convert the list of player rows into a dataframe at the end.
return pd.DataFrame(selected_team)

def show_team_info(team , is_starting_eleven=False):
""" This function displays the points of the initial and final team we get.

"""
squad_value = team['now_cost '].sum()

if is_starting_eleven:
90 points_column = 'GW1 Points '

else:
points_column = 'GW38 Points '

total_points = team[points_column ].sum()

if is_starting_eleven:
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print("\nStarting Team:")

print("\nSquad List:")
100 for _, player in team.iterrows ():

if is_starting_eleven:
points = player['GW1 Points ']
points_label = "GW1 Points"

else:
points = player['GW38 Points ']
points_label = "GW38 Points"

print(f"{player['first_name ']} {player['second_name ']} ({ player['
position ']}) - "

f"Value: {player['now_cost ']/10:.1f}m, {points_label }: {points
:.2f}")

110 print(f"\nTotal Squad Value: {squad_value /10:.1f}m")
print(f"Expected {points_label }: {total_points :.2f}")

def make_transfer(team , player_data , current_gw):
""" This function looks at our team and finds the best transfer according to

the greedy algorithm."""
print(f"\nTransfer before GW{current_gw + 1}:")
next_gw = f'GW{current_gw + 1} Points '
best_transfer = {

'out': None ,
'in': None ,

120 'points_gain ': 0,
'budget_impact ': 0}

# Look through all the players in our team and find which player would be
best to transfer in for them.

for _, current_player in team.iterrows ():
current_points = current_player[next_gw]

# Make a list of all the players of this player 's position and sort
them by their next week points.

potential_replacements = player_data[
(player_data['position '] == current_player['position ']) &

130 (player_data['id'] != current_player['id'])
]. sort_values(next_gw , ascending=False)

# Loop through all the possible replacements to find the most
beneficial one.

for _, replacement in potential_replacements.iterrows ():
# Check if the replacement would respect our constraints.
budget_after_transfer = team['now_cost '].sum() - current_player['

now_cost '] + replacement['now_cost ']
team_count = len(team[team['team'] == replacement['team']])

# This skips this replacement if they'd disobey our constraints.
140 if (budget_after_transfer > 800 or

(team_count == 3 and replacement['team'] != current_player['
team']) or

replacement['id'] in team['id']. values):
continue

# Here we calculate how many points this potential transfer would
make

points_gain = replacement[next_gw] - current_points
if points_gain > best_transfer['points_gain ']:

best_transfer = {
'out': current_player ,

150 'in': replacement ,
'points_gain ': points_gain ,
'budget_impact ': budget_after_transfer}
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# Once we've evaluated all transfers , we make the one which is most
beneficial.

if best_transfer['points_gain '] > 0:
print(f"Out: {best_transfer['out ']['first_name ']} {best_transfer['out

']['second_name ']} ({ best_transfer['out ']['position ']})")
print(f"In: {best_transfer['in ']['first_name ']} {best_transfer['in ']['

second_name ']} ({ best_transfer['in ']['position ']})")
print(f"Points gain: {best_transfer['points_gain ']:.2f}")

160 # This removes the player being transferred out.
new_team = team[team['id'] != best_transfer['out']['id']]
# This adds the new player.
new_team = pd.concat ([new_team , pd.DataFrame ([ best_transfer['in']])],

ignore_index=True)
else:

print("No beneficial transfers found")
new_team = team

remaining_budget = 800 - new_team['now_cost '].sum()
print(f"Money Left in Bank: {remaining_budget /10:.1f}m")

170 return new_team

def main():
""" This is the function which executes all of the other functions to

actually run the full greedy algorithm for the season."""

# This sets up our player data and constraints.
player_data = get_player_data ()
constraints = set_up_constraints ()

# This chooses our initial team and prints it.
180 initial_team = choose_starting_team(player_data , constraints)

show_team_info(initial_team , is_starting_eleven=True)

# This sets up the variables which track our season.
current_team = initial_team.copy()
total_points = initial_team['GW1 Points '].sum()
squad_values = [initial_team['now_cost '].sum()]

# This loop does all the transfers and tracks our points and squad value.
for gw in range(1, 38):

190 current_team = make_transfer(current_team , player_data , gw)

total_points += current_team[f'GW{gw + 1} Points '].sum()

squad_values.append(current_team['now_cost '].sum())

# Calculate average squad value
avg_squad_value = sum(squad_values) / len(squad_values)

# Print our final team.
200 print("\nFinal Team:")

show_team_info(current_team)

# Print a season summary.
print("\n Season Summary:")
print(f"Total Season Points: {total_points :.2f}")
print(f"Average squad value: {avg_squad_value /10:.1f}m")

# This function times our code and also counts the total number of functions
that are called.

def run_with_profile(func):
210 start_time = time.time()

profiler = cProfile.Profile ()
profiler.enable ()
func()
profiler.disable ()
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stats = pstats.Stats(profiler)
total_calls = stats.total_calls
end_time = time.time()
execution_time = end_time - start_time

220
# This displays the time taken and number of function calls.
print(f"\n Performance Summary:")
print(f"Total function calls: {total_calls}")
print(f"Total execution time: {execution_time :.3f} seconds")

if __name__ == "__main__":
run_with_profile(main)
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Appendix D

Knapsack Algorithm GW1 Code

0
import pandas as pd
import cProfile
import pstats
import time

# This lets us print the team names of the final squad to check our constraints
are met

TEAM_NAMES = {
1: "Arsenal",
2: "Aston Villa",

10 3: "Bournemouth",
4: "Brentford",
5: "Brighton",
6: "Burnley",
7: "Chelsea",
8: "Crystal Palace",
9: "Everton",
10: "Fulham",
11: "Liverpool",
12: "Luton",

20 13: "Man City",
14: "Man Utd",
15: "Newcastle",
16: "Nott'm Forest",
17: "Sheff Utd",
18: "Spurs",
19: "West Ham",
20: "Wolves"

}

30 def get_player_data ():
""" Get our FPL database from the csv file that has all of our predicted

points data and puts it in a dataframe. Then prune it."""
player_data = pd.read_csv('../ Player Points Database.csv')
position_map = {

1: 'GKP',
2: 'DEF',
3: 'MID',
4: 'FWD'}

player_data['position '] = player_data['element_type '].map(position_map)

40 # Add a column for the GW1 points per cost ratio of each player
player_data['points_per_cost '] = player_data['GW1 Points '] / player_data['

now_cost ']

# Create a new empty dataframe to fill up with the pruned data
pruned_data = pd.DataFrame ()
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# Iterate through each position , getting the X number of players in points
and points per cost ratio

for pos , (top_points , top_ratio) in {
'GKP': (10, 10),
'DEF': (40, 40),

50 'MID': (40, 40),
'FWD': (20, 20)

}.items ():
pos_data = player_data[player_data['position '] == pos]

# Select the players with the highest GW1 points
top_by_points = pos_data.nlargest(top_points , 'GW1 Points ')
# Select the players with the highest GW1 points to cost ratio
top_by_ratio = pos_data.nlargest(top_ratio , 'points_per_cost ')

60 # Add these players to the initially blank dataframe and remove
duplicates if there are any

pruned_data = pd.concat ([ pruned_data , top_by_points , top_by_ratio ]).
drop_duplicates ()

return pruned_data

def set_up_constraints ():
"""Here , we put our budget , position and team constraints into a

dictionary."""
return {

'budget ': 800,
'positions ': {

70 'GKP': 1,
'DEF': 4,
'MID': 4,
'FWD': 2},

'max_arsenal_players ': 3}

# We create a cache which is a dictionary. It stroes previously computed
results so we don't have to keep doing them again.

cache = {}

def get_state_key(i, budget , pos_counts , arsenal_count):
80 """ This functions creates a unique key to keep track of our state in the

iteration. It includes the index of the player under consideration , the
budget remaining , the number of players in each position and the number of
Arsenal players. Our iteration starts with the player with the highest index
and works down. The index number here represents the player 's index we are at
as we go down the decision tree."""
pos_tuple = tuple(pos_counts.items ())
return (i, budget , pos_tuple , arsenal_count)

def is_valid_addition(player , pos_counts , arsenal_count , constraints):
""" This function checks if adding a certain player would violate

constraints."""
# Checking position constraints
if pos_counts[player['position ']] == constraints['positions '][ player['

position ']]:
return False

90 # Checking Arsenal team constraint
if player['team'] == 1:

if arsenal_count == constraints['max_arsenal_players ']:
return False

return True

def solve_recursive(players , constraints , i, budget , pos_counts , arsenal_count)
:
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""" This function carries out the recursive knapsack algorithm. It takes in
our player database , constraints , player index of where we are in the
decision tree , number of each position filled and numebr of Arsenal players
picked."""

100 # If we have no players under consideration or or no budget to consider ,
return 0 for points and no selections.

if i < 0 or budget <= 0:
return 0, []

# Here , we check if we've been in this situation before. If we have , take
the result that's stored in the cache for this state key.

state_key = get_state_key(i, budget , pos_counts , arsenal_count)
if state_key in cache:

return cache[state_key]

# This exracts the specific player under consideration from the database
110 player = players.iloc[i]

# Consider not taking the player
dont_take_value , dont_take_players = solve_recursive(

players , constraints , i - 1, budget , pos_counts.copy(), arsenal_count
)

# Consider taking the player , if it's valid
take_value , take_players = 0, []
if (player['now_cost '] <= budget and

120 is_valid_addition(player , pos_counts , arsenal_count , constraints)):

# Update the position counter and Arsenal counter
new_pos_counts = pos_counts.copy()
new_pos_counts[player['position ']] += 1
new_arsenal_count = arsenal_count + (1 if player['team'] == 1 else 0)

# Call the function for the next player to continue the recursion
value , players = solve_recursive(

players ,
130 constraints ,

i - 1,
budget - player['now_cost '],
new_pos_counts ,
new_arsenal_count)

take_value = value + player['GW1 Points ']
take_players = players + [i]

# Decide whether picking the player or not is worth it and store the result
if take_value > dont_take_value:

140 result = (take_value , take_players)
else:

result = (dont_take_value , dont_take_players)

cache[state_key] = result
return result

def find_optimal_team(player_data , constraints):
""" This function implements the recursive function that we defined above.

"""
# We set the position counters to 0.

150 initial_pos_counts = {pos: 0 for pos in constraints['positions ']}

# Make sure the cache is empty
cache.clear()

# Start the iteration process from the highest index player and store the
indices of the players of the optimal team

_, selected_indices = solve_recursive(
player_data ,
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constraints ,
len(player_data) - 1,

160 constraints['budget '],
initial_pos_counts ,
0)

return player_data.iloc[selected_indices]

def show_team_info(team):
""" This function shows us information about the optimal team."""
squad_value = team['now_cost '].sum()
total_points = team['GW1 Points '].sum()

170
print("\nSelected Team:")
for _, player in team.iterrows ():

team_name = TEAM_NAMES.get(player['team'], f"Team {player['team ']}")
print(f"{player['first_name ']} {player['second_name ']} ({ player['

position ']}, {team_name }) - "
f"Value: {player['now_cost ']/10:.1f}m, GW1 Points: {player['GW1

Points ']:.2f}")

print(f"\nTotal Squad Value: {squad_value /10:.1f}m")
print(f"Expected GW1 Points: {total_points :.2f}")

180 def main():
""" This is the main function which executes our other functions."""
player_data = get_player_data ()
constraints = set_up_constraints ()

print(f"\nPruned dataset contains {len(player_data)} players")

print("\nFinding optimal team ...")
optimal_team = find_optimal_team(player_data , constraints)

190 show_team_info(optimal_team)

def run_with_profile(func):
""" This function times our code and also counts the total number of

function calls."""
start_time = time.time()
profiler = cProfile.Profile ()
profiler.enable ()
func()
profiler.disable ()

200 stats = pstats.Stats(profiler)
total_calls = stats.total_calls
end_time = time.time()
execution_time = end_time - start_time

# This diplays the time taken and number of function calls.
print(f"\n Performance Summary:")
print(f"Total function calls: {total_calls}")
print(f"Total execution time: {execution_time :.3f} seconds")

210 if __name__ == "__main__":
run_with_profile(main)
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Appendix E

Mutation Process Pseudocode

When we mutate, we pick a random week from 1 to 38. There are two cases:

Case 1: We pick GW1.

In this case, we have to mutate the starting team.

We pick one player randomly in the starting team and get the data about the

player we want to replace.

We call this player 'player_to_replace'.

We then search the database for all players we could swap in which fit all the

constraints.

We randomly pick one and call this player 'replacement'.

We make the swap.

After this, we have to update the future transfer strategy so it doesn't give

an invalid solution.

To do this, first we need to edit the lowest gameweek transfer which transfers

out 'player_to_replace' (if there is one).

If this transfer exists, we have to switch this transfer from transferring out

'player_to_replace' to transferring out 'replacement'.

Second, we need to edit the lowest gameweek transfer which transfers in

'replacement' (if there is one).

If this transfer exists, we have to switch this transfer from transferring in

'replacement' to transferring in 'player_to_replace'.

Once this is done, we validate the final solution we have obtained to check it

fits all of the constraints each week.

If it's not, we restart this process and try again.
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Case 2: We pick GWX, where X is between 2 and 38 inclusive.

In this case, we mutate the transfer strategy. We will be changing the

transfer which occurs in GWX.

To do this, we first delete the transfer planned for this week.

We call the player who would've been transferred out 'deleted_out' and the

player who would've been transferred in 'deleted_in'.

Next, we choose a random player currently in the team (i.e. the team obtained

in GW(X-1)).

We call this player 'player_to_replace'.

We then search the database for all players we could swap in which fit all the

constraints.

We randomly pick one and call this player 'replacement'.

We add this transfer to our transfer strategy.

After this, we have to update the future transfer strategy so it doesn't give

an invalid solution.

First, we will not have 'deleted_in' in our team anymore.

Therefore, we need to edit the lowest gameweek transfer (above GWX) which

transfers out 'deleted_in' (if there is one).

If this transfer exists, we have to switch this transfer from transferring out

'deleted_in' to transferring out 'deleted_out'.

Second, we will not be able to transfer in 'deleted_out' in the future.

Therefore, we need to edit the lowest gameweek transfer (above GWX) which

transfers in 'deleted_out' (if there is one).

If this transfer exists, we have to switch this transfer from transferring in

'deleted_out' to transferring in 'deleted_in'.

Once this is done, we validate the final solution we have obtained to check it

fits all of the constraints each week.

If it's not, we restart this process and try again.
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Appendix F

Genetic Algorithm Random Population
Code

0
import pandas as pd
import random
import time
import cProfile
import pstats
import copy
import numpy as np

# Setting up constraints
10 budget = 800

positions = {
1: 1,
2: 4,
3: 4,
4: 2}

max_players_per_team = 3
population_size = 20
generations = 100

20
def get_player_data(filename):

""" Get our FPL database from the csv file that has all of our predicted
points data and put it in a dataframe."""

return pd.read_csv(filename)

def prune_player_data(player_data):
""" This function prunes our player data to only consider some players."""

# We calculate total points for each player
gw_columns = [f'GW{i} Points ' for i in range(1, 39)]

30 player_data['total_points '] = player_data[gw_columns ].sum(axis =1)

# We also calculate points per cost
player_data['points_per_cost '] = player_data['total_points '] / player_data[

'now_cost ']

selected_players = []

# We loop through each position , picking the top in each category
for pos in [1, 2, 3, 4]:

pos_data = player_data[player_data['element_type '] == pos]
40
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top_by_points = pos_data.nlargest (10 if pos == 1 else (40 if pos in [2,
3] else 20), 'total_points ')

top_by_ppc = pos_data.nlargest (10 if pos == 1 else (40 if pos in [2, 3]
else 20), 'points_per_cost ')

# Here we combine the picks
selected_players.extend(top_by_points.index.tolist ())
selected_players.extend(top_by_ppc.index.tolist ())

# Here we remove the duplicates
50 selected_players = list(set(selected_players))

return player_data.loc[selected_players ]. reset_index(drop=True)

def validate_team(team_ids , player_data):
""" This checks if a team at a specific GW meets the constraints."""

# This gets the IDs of the players in the team
team = player_data[player_data['id'].isin(team_ids)]

# Checking we have 11 players
60 if len(team) != 11:

return False

# Checking we have the right number of players in each position
if team['element_type ']. value_counts ().to_dict () != positions:

return False

# Check budget
if team['now_cost '].sum() > budget:

return False
70

# Check Premier League Club limits
team_counts = team['team']. value_counts ()
if (team_counts > max_players_per_team).any():

return False

return True

def generate_random_team(player_data):
""" This makes a random valid initial FPL team """

80
while True:

team_ids = []
position_counts = {pos: 0 for pos in positions}
team_counts = {}
total_cost = 0

# We start with goalkeeper and fill up
for pos , limit in positions.items():

pos_players = player_data[player_data['element_type '] == pos]
90

# Pick a random player until we hit the position limit
while position_counts[pos] < limit:

# To choose the next player , find the players not in the team
players_not_in_team = pos_players [~ pos_players['id'].isin(

team_ids)]

# Filter players out who break the constraints
valid_players = pos_players[

(~ pos_players['id'].isin(team_ids)) &
(pos_players['team'].map(lambda x: team_counts.get(x, 0) <

max_players_per_team)) &
100 (pos_players['now_cost '] <= budget - total_cost)

]

if valid_players.empty:
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break

# Pick a random player
player = valid_players.sample (1).iloc [0]

# Check the player fits the budget
110 if total_cost + player['now_cost '] > budget:

break

# Add player to team
team_ids.append(player['id'])
position_counts[pos] += 1
team_counts[player['team']] = team_counts.get(player['team'],0)

+ 1
total_cost += player['now_cost ']

# Once we have the team , just double check it's valid
120 if len(team_ids) == 11 and validate_team(team_ids , player_data):

return team_ids

def generate_random_transfers(starting_team , player_data):
""" This function takes our random starting team and generates a subsequent

random transfer strategy."""

transfers = []
current_team = starting_team.copy()

# Our transfers start for GW2 and end in GW38
130 for gw in range(2, 39):

# We don't always have to transfer so add a small chance of skipping
if random.random () < 0.2:

continue

current_team_data = player_data[player_data['id'].isin(current_team)]

# Randomly pick a player to transfer out
player_out = random.choice(current_team)
player_out_data = player_data[player_data['id'] == player_out ].iloc [0]

140
# Get a list of players not in the current team in this position
same_pos_players = player_data[

(player_data['element_type '] == player_out_data['element_type ']) &
(~ player_data['id'].isin(current_team))]

# Calculate current team cost and team counts
current_cost = current_team_data['now_cost '].sum()
team_counts = current_team_data['team']. value_counts ().to_dict ()

150 # Decrease the team counter for the player we're transferring out
team_counts[player_out_data['team']] = team_counts.get(player_out_data[

'team'], 0) - 1

# Calculate remaining budget after transferring out
remaining_budget = budget - (current_cost - player_out_data['now_cost '

])

# Filter out players that would break constraints
valid_players = same_pos_players[

(same_pos_players['now_cost '] <= remaining_budget) &
(same_pos_players['team'].map(lambda x: team_counts.get(x, 0) <

max_players_per_team))]
160

if valid_players.empty:
continue

# Randomly pick a player to transfer in
player_in = valid_players.sample (1).iloc [0]
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# Make the transfer
current_team.remove(player_out)
current_team.append(player_in['id'])

170
# Add transfer to list
transfers.append ({

'gameweek ': gw ,
'transfer_out ': player_out ,
'transfer_in ': player_in['id']

})

return transfers

180 def generate_random_solution(player_data):
""" This function just combines our 'make initial team' and 'make transfer

strategy ' functions."""
starting_team = generate_random_team(player_data)
transfers = generate_random_transfers(starting_team , player_data)

return {
'starting_team ': starting_team ,
'transfers ': transfers

}

190 def get_team_at_gw(solution , gw, player_data):
""" This function gets a team at specific GW by running the transfers."""
current_team = [int(player_id) for player_id in solution['starting_team ']]

# Sort transfers by gameweek to ensure they're applied in order
sorted_transfers = sorted(solution['transfers '], key=lambda x: x['gameweek '

])

# Apply the weekly transfers
for transfer in sorted_transfers:

if transfer['gameweek '] <= gw:
200 current_team.remove(int(transfer['transfer_out ']))

current_team.append(int(transfer['transfer_in ']))

return current_team

def mutate(solution , player_data):
""" This function implements the mutation strategy outlined in Mutation

Strategy.txt."""
# Create a copy of the solution to try and mutate
original_solution = copy.deepcopy(solution)

210 # Keep trying to mutate until we get a valid one
while True:

sol_to_mutate = copy.deepcopy(original_solution)
target_gw = random.randint(1, 38)

if target_gw == 1:
# Need to mutate starting team
current_team = sol_to_mutate['starting_team '].copy()
player_to_replace = random.choice(current_team)

220 # Get the data of the player to replace
player_data_row = player_data[player_data['id'] ==

player_to_replace ].iloc [0]
pos = player_data_row['element_type ']

# Calculate budget for new player
current_cost = sum(player_data[player_data['id'] == player ]['

now_cost '].iloc [0] for player in current_team)
player_out_cost = player_data_row['now_cost ']
budget_for_new = budget - (current_cost - player_out_cost)

60



# Find valid replacements
230 players_of_pos = player_data[player_data['element_type '] == pos]

valid_replacements = players_of_pos[
(~ players_of_pos['id'].isin(current_team)) &
(players_of_pos['now_cost '] <= budget_for_new)

]['id']. tolist ()

if not valid_replacements:
continue

# Pick a replacement randomly
240 replacement = random.choice(valid_replacements)

# Update the starting team
sol_to_mutate['starting_team ']. remove(player_to_replace)
sol_to_mutate['starting_team ']. append(replacement)

# Update future transfers
# Find lowest gameweek transfer that transfers out

player_to_replace
transfer_out = next((t for t in sol_to_mutate['transfers '] if t['

transfer_out '] == player_to_replace), None)
if transfer_out:

250 transfer_out['transfer_out '] = replacement

# Find lowest gameweek transfer that transfers in replacement
transfer_in = next((t for t in sol_to_mutate['transfers '] if t['

transfer_in '] == replacement), None)
if transfer_in:

transfer_in['transfer_in '] = player_to_replace

else:
# Need to mutate transfer strategy
team_before = get_team_at_gw(sol_to_mutate , target_gw - 1,

player_data)
260

# See if there 's an existign transfer planned for this week
existing_transfer = next((t for t in sol_to_mutate['transfers '] if

t['gameweek '] == target_gw), None)

if existing_transfer:
# Store the players involved in the transfer we are deleting
deleted_out = existing_transfer['transfer_out ']
deleted_in = existing_transfer['transfer_in ']

# Remove the existing transfer
270 sol_to_mutate['transfers ']. remove(existing_transfer)

else:
deleted_out = None
deleted_in = None

# Pick a random player to replace
player_to_replace = random.choice(team_before)

# Get the data of the player to replace
player_data_row = player_data[player_data['id'] ==

player_to_replace ].iloc [0]
280 pos = player_data_row['element_type ']

# Calculate budget for new player
current_cost = sum(player_data[player_data['id'] == player ]['

now_cost '].iloc [0] for player in team_before)
player_out_cost = player_data_row['now_cost ']
budget_for_new = budget - (current_cost - player_out_cost)

# Find valid replacements
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players_of_pos = player_data[player_data['element_type '] == pos]
valid_replacements = players_of_pos[

290 (~ players_of_pos['id'].isin(team_before)) &
(players_of_pos['now_cost '] <= budget_for_new)

]['id']. tolist ()

if not valid_replacements:
continue

# Pick a replacement randomly
replacement = random.choice(valid_replacements)

300 # Add the new transfer
sol_to_mutate['transfers ']. append ({

'gameweek ': target_gw ,
'transfer_out ': player_to_replace ,
'transfer_in ': replacement

})

# Id we had an existsing transfer , we need to change the future
strategy so it stays valid

if deleted_out is not None and deleted_in is not None:
# Find lowest gameweek transfer that transfers out deleted_in

310 transfer_out = next((t for t in sol_to_mutate['transfers '] if t
['gameweek '] > target_gw and t['transfer_out '] == deleted_in), None)

if transfer_out:
transfer_out['transfer_out '] = deleted_out

# Find lowest gameweek transfer that transfers in deleted_out
transfer_in = next((t for t in sol_to_mutate['transfers '] if t[

'gameweek '] > target_gw and t['transfer_in '] == deleted_out), None)
if transfer_in:

transfer_in['transfer_in '] = deleted_in

# Sort transfers by gameweek to ensure they're in order
320 sol_to_mutate['transfers '].sort(key=lambda x: x['gameweek '])

# Validate solution just to double check
is_valid = validate_solution(sol_to_mutate , player_data)
if is_valid:

return sol_to_mutate

def calculate_season_score(solution , player_data):
""" Calculate the total season points score for a solution."""
total_points = 0

330
# Loop through each week
for gw in range(1, 39):

team_at_gw = get_team_at_gw(solution , gw, player_data)

# Calculate points for this gameweek
gw_points = sum(

player_data[player_data['id'] == player_id ][f'GW{gw} Points '].iloc
[0]

for player_id in team_at_gw)

340 total_points += gw_points

return total_points

def validate_solution(solution , player_data):
""" This function checks a solution is valid."""

# First , we check if the transfers are valid i.e if the players mentioned
are in the team

current_team = set(solution['starting_team '])
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sorted_transfers = sorted(solution['transfers '], key=lambda x: x['gameweek '
])

350
for transfer in sorted_transfers:

if int(transfer['transfer_out ']) not in current_team:
return False

current_team.remove(int(transfer['transfer_out ']))
current_team.add(int(transfer['transfer_in ']))

# Check each gameweek 's team is valid
for gw in range(1, 39):

team_at_gw = get_team_at_gw(solution , gw, player_data)
360 if not validate_team(list(team_at_gw), player_data):

return False

return True

def find_crossover_point(parents , player_data):
""" This function finds if there are any points where two parents are

identical. It only returns if there is only one crossover point. This
prevents repeated crossover with similar solutions."""

valid_points = []

370 # Check weeks 2 to 37. Crossover at GW1 or GW38 doesn 't make sense.
for gw in range(2, 38):

team1 = get_team_at_gw(parents [0], gw, player_data)
team2 = get_team_at_gw(parents [1], gw, player_data)

# Check if teams are identical. We sort the lists to compare
if sorted(team1) == sorted(team2):

valid_points.append(gw)

# Only return a crossover point if there is only one valid one
380 return valid_points if len(valid_points) == 1 else []

def crossover(parent1 , parent2 , player_data):
""" This function actually carries out the crossover. It returns the parents

if the crossover fails , and returns two offspring if it works."""

crossover_point = find_crossover_point ([parent1 , parent2], player_data)

if not crossover_point:
return parent1 , parent2

390 # We extract the point from the list
crossover_gw = crossover_point [0]

# See what our teams look like at the crossover
team1 = get_team_at_gw(parent1 , crossover_gw , player_data)
team2 = get_team_at_gw(parent2 , crossover_gw , player_data)

# Create two offspring by copying the parents
child1 = copy.deepcopy(parent1)
child2 = copy.deepcopy(parent2)

400
# Swap the children 's transfers after the point to perform crossover
child1_transfers = [t for t in child1['transfers '] if t['gameweek '] <=

crossover_gw]
child1_transfers.extend ([t for t in parent2['transfers '] if t['gameweek '] >

crossover_gw ])
child1['transfers '] = child1_transfers

child2_transfers = [t for t in child2['transfers '] if t['gameweek '] <=
crossover_gw]

child2_transfers.extend ([t for t in parent1['transfers '] if t['gameweek '] >
crossover_gw ])
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child2['transfers '] = child2_transfers

410 return child1 , child2

def run_genetic_algorithm(player_data):
""" This function puts all of our functions together and runs the genetic

algorithm.
1. Report the best score from the generation
2. Make a copy of the top 5% of solutions (elitism) to preserve them
3. Look through pairs of parents , doing crossover.
4. Mutate half of the population
5. Perform selection: First add the elite solutions to final population ,

then use roulette wheel.
"""

420
# We start timing
algorithm_start_time = time.time()

# Make our initial population
population = []
while len(population) < population_size:

solution = generate_random_solution(player_data)
is_valid = validate_solution(solution , player_data)
if is_valid:

430 population.append(solution)

# We keep track of stats here
generation_stats = []

# Score our initial population (named Generation 0)
initial_scores = [calculate_season_score(sol , player_data) for sol in

population]
best_initial_solution = population[initial_scores.index(max(initial_scores)

)]

# Here , we start our tracking of the best solution
440 best_solution_overall = best_initial_solution

best_score_overall = max(initial_scores)
generation_stats.append ({

'generation ': 0,
'best_score ': best_score_overall ,
'time_taken ': 0})

print(f"Generation 0 (Initial): Best Score = {best_score_overall :.2f}")

# We run through the generations
450 for generation in range(1, generations + 1):

# We score the generation and update our best solution
current_scores = [calculate_season_score(sol , player_data) for sol in

population]
current_best_score = max(current_scores)
current_best_solution = population[current_scores.index(

current_best_score)]

if current_best_score > best_score_overall:
best_score_overall = current_best_score
best_solution_overall = current_best_solution

460 # We store the generation stats
generation_stats.append ({

'generation ': generation ,
'best_score ': current_best_score })

# Here , get population for next generation
# Make a copy of the elite solutions
num_elite = max(1, round(len(population) * 0.05))
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# Sort the indices of the solutions by score from most to least
470 sorted_indices = sorted(range(len(current_scores)), key=lambda i:

current_scores[i], reverse=True)
elite_solutions = [population[i] for i in sorted_indices [: num_elite ]]

# Here , we run the crossover section
new_population = []
available_parents = list(range(len(population))) # List of indices of

available parents

while available_parents:
# Pick a random parent
parent1_idx = random.choice(available_parents)

480 parent1 = population[parent1_idx]
available_parents.remove(parent1_idx)

# Try to crossover with each remaining parent in random order
random.shuffle(available_parents)
found_crossover = False

for parent2_idx in available_parents:
parent2 = population[parent2_idx]
child1 , child2 = crossover(parent1 , parent2 , player_data)

490
# If we got new children , it was a successful crossover
if child1 != parent1 or child2 != parent2:

new_population.extend ([child1 , child2 ])
available_parents.remove(parent2_idx)
found_crossover = True
break

# If no crossover was found with any parent , we add parent1 to new
population

if not found_crossover:
500 new_population.append(parent1)

# After crossover , we mutate half the new population
num_to_mutate = len(new_population) // 2
indices_to_mutate = random.sample(range(len(new_population)),

num_to_mutate)

for i in indices_to_mutate:
new_population[i] = mutate(new_population[i], player_data)

# Calculate scores for the new population so we can do roulette wheel
510 scores = [calculate_season_score(sol , player_data) for sol in

new_population]

# Create next generation out of elite solutions and roulette wheel
picks

remaining_slots = population_size - num_elite

# Calculate total score of new population
total_score = sum(scores)

# Calculate selection probabilities
selection_probs = [score/total_score for score in scores]

520
# Select remaining solutions using roulette wheel
selected_solutions = []
for _ in range(remaining_slots):

# Use a numpy function that does weighted random choices
selected_index = np.random.choice(len(new_population), p=

selection_probs)
selected_solutions.append(new_population[selected_index ])

population = elite_solutions + selected_solutions
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530 # Print our progress
print(f"Generation {generation }: Best Score = {current_best_score :.2f}"

)

# Calculate the total time taken
total_time = time.time() - algorithm_start_time

# Print final stats
print("\nFinal Results:")
print(f"Total Generations: {generations}")
print(f"Final Best Score: {best_score_overall :.2f}")

540 print(f"Total Time Taken: {total_time :.2f} seconds")

return best_solution_overall , generation_stats

def main():
""" This function runs the genetic algorithm and loads the player data."""
# Start timing and counting function calls
profiler = cProfile.Profile ()
profiler.enable ()
start_time = time.time()

550
player_data = get_player_data("Player Points Database.csv")
player_data = prune_player_data(player_data)

# Run the genetic algorithm
best_solution , generation_stats = run_genetic_algorithm(player_data)

# End the timing and counting function calls
profiler.disable ()
total_time = time.time() - start_time

560
program_stats = pstats.Stats(profiler)
print(f"\nProgram Statistics:")
print(f"Total function calls: {program_stats.total_calls}")
print(f"Total execution time: {total_time :.3f} seconds")

if __name__ == "__main__":
main()
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